PUBLICATIONS
2024
Mahmud MA, Xu LH, Usatinsky A, Dos Santos CC, Little DJ, Tsai SSH, Rackus DG. Semiquantitative paper-based microfluidic surrogate virus neutralization test for SARS-CoV-2 neutralizing antibodies. (2024) Analytical Chemistry, 23;96(29):11751-11759
2023
Popov G, Fiebig-Comyn A, Syriste L, Little DJ, Skarina T, Stogios PJ, Birstonas S, Coombes BK, Savchenko A. Distinct molecular features of NleG type 3 secreted effectors allow for different roles during Citrobacter rodentium infection in mice. (2023) Infection & Immunity, 91:e00505-22
2022
Pfoh R, Subramanian AS, Huang J, Little DJ, Forman A, DiFrancesco BR, Balouchestani-Asli N, Kitova EN, Klassen JS, Pomès R, Nitz M, Howell PL. The TPR domain of PgaA is a multifunctional scaffold that binds PNAG and modulates PgaB-dependent polymer processing. (2022) PLoS Pathogens, 18(8):e1010750
2018
Ilyas B, Mulder DT, Little DJ, Elhenawy W, Banda MM, Perez-Morales D, Tsai CN, Chau NYE, Bustamante VH, Coombes BK. Regulatory evolution drives evasion of host inflammasomes by Salmonella Typhimurium. (2018) Cell Reports 25, 1-8.
★ Article covered on ‘This Week in Microbiology’, TWiM #189: Salmonella BonJovi
Valleau D, Little DJ, Borek D, Skarina T, Quaile AT, Di Leo R, Houliston S, Lemak A, Arrowsmith CH, Coombes BK, Savchenko A. Functional diversification of the NleG effector family in enterohemorrhagic Escherichia coli. (2018) Proceedings of the National Academy of Science USA 115 (40), 10004-10009
Little DJ and Coombes BK. Molecular basis for CesT recognition of type III secretion effectors in enteropathogenic Escherichia coli. (2018) PLoS Pathogens, 14(8):e1007224
Little DJ*, Pfoh R*, Le Mauff F, Bamford NC, Notte C, Baker P, Guragain M, Robinson H, Pier GB, Nitz M, Deora R, Sheppard DC, Howell PL. PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms. (2018) PLoS Pathogens, 14(4):e1006998
Sychantha D, Little DJ, Chapman RN, Boons GJ, Robinson H, Howell PL, Clarke AJ. PatB1 is an O-acetyltransferase that decorates secondary cell wall polysaccharides. (2018) Nature Chemical Biology, 14(1):79-85
2017
Sychantha D, Jones C, Little DJ, Moynihan PJ, Robinson H, Galley NF, Roper DI, Dowson CG, Howell PL, Clarke AJ. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA). (2017) PLoS Pathogens, 13(10): e1006667
2016
McCallum M, Tammam S, Little DJ, Robinson H, Koo J, Shah M, Calmettes C, Moraes TF, Burrows LL, Howell PL. PilN binding modulates the structure and binding partners of the Pseudomonas aeruginosa Type IVa Pilus protein PilM. (2016) Journal of Biological Chemistry 291, 11003-11015
2015
Baker P, Whitfield GB, Hill PJ, Little DJ, Pestrak MJ, Robinson H, Wozniak DJ, Howell PL. Characterization of the Pseudomonas aeruginosa glycoside hydrolase PslG reveals that its levels are critical for Psl polysaccharide biosynthesis and biofilm formation. (2015) Journal of Biological Chemistry 290, 28374-28387
Bamford NC, Snarr BD, Gravelat FN, Little DJ, Lee MJ, Zacharias CA, Chabot JC, Geller AM, Baptista SD, Baker P, Robinson H, Howell PL, Sheppard DC. Sph3 is a glycoside hydrolase required for the biosynthesis of galactosaminogalactan in Aspergillus fumigatus. (2015) Journal of Biological Chemistry 290, 27438-27450
Little DJ*, Milek S*, Bamford NC, Ganguly T, DiFrancesco B, Nitz M, Deora R, Howell PL. BpsB is a poly-β(1,6)-N-acetyl-D-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica. (2015) Journal of Biological Chemistry 290, 22827-22840
Roux D, Cywes-Bentley C, Zhang YF, Pons S, Konkol M, Kearns DB, Little DJ, Howell PL, Skurnik D, Pier GB. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. (2015) Journal of Biological Chemistry 290, 19261-19272
Ariyakumaran R, Pokrovskaya V, Little DJ, Howell PL, Nitz M. Direct Staudinger-phosphonite reaction provides methylphosphonamidates as inhibitors of CE4 de-N-acetylases. (2015) Chembiochem 16, 1350-1356
2014
Little DJ, Bamford NC, Pokrovskaya V, Robinson H, Nitz M, Howell PL. Structural basis for the de-N-acetylation of poly-β(1,6)-N-acetyl-D-glucosamine in Gram-positive bacteria. (2014) Journal of Biological Chemistry 289, 35907-35917
Baker P, Ricer R, Moynihan PJ, Kitova EN, Walvoort MTC, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H, Ohman DE, Codee JDC, Klassen JS, Clarke AJ, Howell PL. P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. (2014) PLoS Pathogens, 10(8):e1004334
Little DJ, Li G, Ing C, DiFrancesco B, Bamford NC, Robinson H, Nitz M, Pomès R, Howell PL. Modification and translocation of the biofilm exopolysaccharide poly-β(1,6)-N-acetyl-D-glucosamine. (2014) Proceedings of the National Academy of Science USA 111 (30), 11013-11018
★ Article Selected for Commentary: Kwan DH and Withers SG. Periplasmic de-acylase helps bacteria don their biofilm coat. (2014) Proceedings of the National Academy of Science USA 111, 10904-10905
Little DJ, Bamford NC, Nitz M, Howell PL. (2014) Metal-dependent polysaccharide deacetylase PgaB. John Wiley & Sons Ltd., Encyclopedia of Inorganic and Bioinorganic Chemistry, 1-11
2013
Pokrovskaya V, Poloczek J, Little DJ, Griffiths H, Howell PL, Nitz M. Functional characterization of Staphylococcus epidermidis IcaB, a de-N-acetylase important for biofilm formation. (2013) Biochemistry 52, 5463-5471
2012
Chibba A, Poloczek J, Little DJ, Howell PL, Nitz M. Synthesis and evaluation of inhibitors of E. coli PgaB, a polysaccharide de-N-acetylase involved in biofilm formation. (2012) Organic Biomolecular Chemistry 35, 7103-7107
Little DJ*, Poloczek J*, Whitney JC, Robinson H, Nitz M, Howell PL. The structure- and metal-dependent activity of Escherichia coli PgaB provides insight into the partial de-N-acetylation of poly-β(1,6)-N-acetyl-D-glucosamine. (2012) Journal of Biological Chemistry 287, 31126-31137
Little DJ, Whitney JC, Robinson H, Yip P, Nitz M, Howell PL. Combining in situ proteolysis and mass spectrometry to crystallize Escherichia coli PgaB. (2012) Acta Crystallography Section F Structural Biology Crystallization Communications 68, 842-845